Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
International journal of environmental research and public health ; 20(5), 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2254563

RESUMEN

In the last few years, many types of research have been conducted on the most harmful pandemic, COVID-19. Machine learning approaches have been applied to investigate chest X-rays of COVID-19 patients in many respects. This study focuses on the deep learning algorithm from the standpoint of feature space and similarity analysis. Firstly, we utilized Local Interpretable Model-agnostic Explanations (LIME) to justify the necessity of the region of interest (ROI) process and further prepared ROI via U-Net segmentation that masked out non-lung areas of images to prevent the classifier from being distracted by irrelevant features. The experimental results were promising, with detection performance reaching an overall accuracy of 95.5%, a sensitivity of 98.4%, a precision of 94.7%, and an F1 score of 96.5% on the COVID-19 category. Secondly, we applied similarity analysis to identify outliers and further provided an objective confidence reference specific to the similarity distance to centers or boundaries of clusters while inferring. Finally, the experimental results suggested putting more effort into enhancing the low-accuracy subspace locally, which is identified by the similarity distance to the centers. The experimental results were promising, and based on those perspectives, our approach could be more flexible to deploy dedicated classifiers specific to different subspaces instead of one rigid end-to-end black box model for all feature space.

2.
Int J Environ Res Public Health ; 20(5)2023 02 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2254578

RESUMEN

In the last few years, many types of research have been conducted on the most harmful pandemic, COVID-19. Machine learning approaches have been applied to investigate chest X-rays of COVID-19 patients in many respects. This study focuses on the deep learning algorithm from the standpoint of feature space and similarity analysis. Firstly, we utilized Local Interpretable Model-agnostic Explanations (LIME) to justify the necessity of the region of interest (ROI) process and further prepared ROI via U-Net segmentation that masked out non-lung areas of images to prevent the classifier from being distracted by irrelevant features. The experimental results were promising, with detection performance reaching an overall accuracy of 95.5%, a sensitivity of 98.4%, a precision of 94.7%, and an F1 score of 96.5% on the COVID-19 category. Secondly, we applied similarity analysis to identify outliers and further provided an objective confidence reference specific to the similarity distance to centers or boundaries of clusters while inferring. Finally, the experimental results suggested putting more effort into enhancing the low-accuracy subspace locally, which is identified by the similarity distance to the centers. The experimental results were promising, and based on those perspectives, our approach could be more flexible to deploy dedicated classifiers specific to different subspaces instead of one rigid end-to-end black box model for all feature space.


Asunto(s)
COVID-19 , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Rayos X , Humanos , Algoritmos , Radiografías Pulmonares Masivas
3.
Applied Sciences ; 12(3):1040, 2022.
Artículo en Inglés | MDPI | ID: covidwho-1648631

RESUMEN

The rising global incidence of chronic kidney disease necessitates the development of image categorization of renal glomeruli. COVID-19 has been shown to enter the glomerulus, a tissue structure in the kidney. This study observes the differences between focal-segmental, normal and sclerotic renal glomerular tissue diseases. The splitting and combining of allied and multivariate models was accomplished utilizing a combined technique using existing models. In this study, model combinations are created by using a high-accuracy accuracy-based model to improve other models. This research exhibits excellent accuracy and consistent classification results on the ResNet101V2 combination using a mix of transfer learning methods, with the combined model on ResNet101V2 showing an accuracy of up to 97 percent with an F1-score of 0.97, compared to other models. However, this study discovered that the anticipated time required was higher than the model employed in general, which was mitigated by the usage of high-performance computing in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA